

2	(a)	$10^{2}-7^{2}-3^{2}\left[=h^{2}\right]$ $\begin{aligned} & 6.45 \leq h<6.5 \\ & 1.5<x \leq 1.52 \end{aligned}$	M3 A1 A1	M2 for $10^{2}=7^{2}+3^{2}+h^{2}$ Or SC2 for using 1.5 to correctly find one other length Or M1 for $7^{2}+3^{2}$ soi by 58	For M3 and M2, $\mathbf{7}^{2}+3^{2}$ may be worked out separately
	(b)	40.3 to 40.6 or 41	3	M2 for any correct trig form for the angle eg $\sin ^{-1}($ their $6.5 \div 10), \cos ^{-1}$ (their7. $6 \div$ 10), $\tan ^{-1}$ (their6.5 \div their7.6) Or M1 for sin/their6.5/10,cos/their7.6/10, tan/their6.5/their7. 6	For M1, expression may be for any combination of the 3 terms

4	(a)	'The straight line distance will be shorter than going along the edges' oe	1	Allow 'the sum of height, length and width' must be more than the diagonal'	If not referring to the straight-line distance, their comment should clearly reference sum of sides/ lengths /edges and diagonal and compare correctly See appendix for exemplars
	(b)	$\sqrt{5.1^{2}+4.7^{2}+2.6^{2}}[=\sqrt{54.86}]$ 7.37 to 7.43	M2	M1 for $5.1^{2}+4.7^{2}+2.6^{2}$ or for the diagonal of one face found [base $=\sqrt{5.1^{2}+4.7^{2}}$ or $6.9(35 \ldots)$, front face $=\sqrt{5.1^{2}+2.6^{2}}$ or $5.7(24 \ldots)$, side face $=\sqrt{4.7^{2}+2.6^{2}}$ or $5.3(7 \ldots)$ or 5.4] Allow B3 for 7.37 to 7.43 to 3 sf or more but accept 7.4(0) only with correct method shown	M0 for just $5.1^{2}+4.7^{2}$ oe with other faces NB 0 for scale drawing

$\mathbf{5}$	(a)	(i)	$(3,0,0)$	$\mathbf{1}$		
		(ii)	$(0,5,2)$	$\mathbf{1}$		
	(b)		6.16 or 6.2	$\mathbf{3}$	M2 for $\sqrt{ }\left(3^{2}+5^{2}+2^{2}\right)$ oe Or M1 for $3^{2}+5^{2}+2^{2} \mathrm{oe}$ Or for $\sqrt{ }\left(3^{2}+5^{2}\right)$ or $\sqrt{ }\left(3^{2}+2^{2}\right)$ or $\sqrt{ }\left(2^{2}+5^{2}\right)$ oe	

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline 7 & & 11.6(\ldots) & 3 & \begin{array}{l}\text { nfww } \\ \text { M2 for } \sqrt{6.7^{2}+6.7^{2}+6.7^{2}} \text { oe } \\ \text { Or M1 for } 6.7^{2}+6.7^{2}+6.7^{2}\end{array} \\ \text { Or SC1 for } 9.47(5 \ldots) \text { rot to 1dp or more }\end{array}\right]$

8			$\sqrt{220^{2}+180^{2}+200^{2}}[=\sqrt{120800}]$ 347.56.. $=3.47$ to 3.48 m or 3.5 m so yes	M2 A1 A1	M1 for $220^{2}+180^{2}+200^{2}$ or for the diagonal of one face found rot to 3 sf or more [284.25..., 269.07..., 297.32...] Allow A1 for 347 to 348 Allow B1FT for correct conversion of their answer cm to m or of 3 m to 300 cm - may be e rned at start by conversion of a length to metres eg $2.2,1.8,2$ seen on diagram	NB 0 for scale drawing, except that B1 may still be earned B0 for just stating $100 \mathrm{~cm}=1 \mathrm{~m}$

$\mathbf{9}$	(a)	($(0,5,3)$	1		
		(ii)	$(6,5,0)$	1		
		(iii)	$(3,0,1.5)$	1		
	(b)		9	2	M1 for $6 \times 3 \div 2$ oe	
	(c)	8.36 to 8.4 or $\sqrt{70}$ final answer	3	M2 for $6^{2}+5^{2}+3^{2}$ oe soi by 70 Or M1 for $\left(6^{2}+5^{2}\right)$ or $\left(6^{2}+3^{2}\right)$ or $\left(5^{2}+\right.$ $\left.3^{2}\right)$ soi	May be in two steps for M2	

| 10 | $\sqrt{35^{2}+28^{2}+15^{2}}$ oe |
| :---: | :--- | :--- |
| $47.2[65 \ldots]$ or 47.3 www and no | |
| | |

M2
M1 for $35^{2}+28^{2}+15^{2}$ oe or 2234 (may be in two steps of 2D Pythagoras')

A1
Ignore additional comments after 'no' Allow 47 only after $\sqrt{2234}$ or $\sqrt{35^{2}+28^{2}+15^{2}}$ is shown with no premature approximation
Allow B3 for $47.2[65 \ldots$...] or 47.3 and no

If in two steps then figures are
$(35,28)$ pair $=2009 \mathrm{sq}$ root $=44.82 \ldots$,
$(35,15)$ pair $=1450 \mathrm{sq}$ root $=38.07 \ldots$,
$(28,15)$ pair $=1009 \mathrm{sq}$ root $=31.76$..
$+\quad$ ust combine to score M2 or M1

