Q	uestion	Answer	Mark	Answer
1		47 to 47.4° with diagram and commentary	5	EG For triangle MXN (X midpoint of BC): MX = $\sqrt{(3.5^2 + 3^2)} = 4.60977$ rot NX = 5 Angle NMX = tan ⁻¹ (5/4.60977) = 47 to 47.4°
		47 to 47.4° with no diagram and little or no commentary	4-3	MX (4.6) <u>or</u> MN (6.8) found AND Correct trig ratio used in the correct triangle
		MX (4.6) <u>or</u> MN (6.8) found OR Correct trig ratio for their values in the correct triangle	2-1	Correct triangle identified OR any correct attempt at Pythagoras
		No worthy work	0	

2	(a)	$10^{2} - 7^{2} - 3^{2} [= h^{2}]$ 6.45 \le h < 6.5 1.5 < x \le 1.52	M3 A1 A1	M2 for $10^2 = 7^2 + 3^2 + h^2$ Or SC2 for using 1.5 to correctly find one other length Or M1 for $7^2 + 3^2$ soi by 58	For M3 and M2 , 7 ² + 3 ² may be worked out separately
	(b)	40.3 to 40.6 or 41	3	M2 for any correct trig form for the angle eg sin ⁻¹ (<i>their</i> 6.5 \div 10), cos ⁻¹ (<i>their</i> 7.6 \div 10), tan ⁻¹ (<i>their</i> 6.5 \div <i>their</i> 7.6) Or M1 for sin/ <i>their</i> 6.5/10,cos/ <i>their</i> 7.6/10, tan/ <i>their</i> 6.5/ <i>their</i> 7.6	For M1 , expression may be for any combination of the 3 terms

3	(a	$\sqrt{(10^2 - (3^2 + 3^2))}$ oe 9.05 to 9.08	M2 A1	M1 for $\sqrt{(3^2 + 3^2)}$ or $\sqrt{(6^2 + 6^2)}$	
	(b)	64.8 to 65.6	3	M2 for sin ⁻¹ (9.1 ÷ 10) or better or for cos ⁻¹ (<i>their</i> $\sqrt{18}$ ÷ 10) oe or for tan ⁻¹ (9.1 ÷ <i>their</i> $\sqrt{18}$) oe or better Or M1 for sight of sin $x = \frac{9.1}{10}$ oe etc or for $\frac{\sin x}{9.1} = \frac{\sin 90}{10}$ oe Or SC1 for answer 72.54 rot	For √18 accept 4.242640687 rot For 9.1 accept 9.05538513 rot Any correct trig. equation for the appropriate triangle

4	(a)	'The straight line distance will be shorter than going along the edges' oe	1	Allow 'the sum of height, length and width' must be more than the diagonal'	If not referring to the straight-line distance, their comment should clearly reference sum of sides/ lengths /edges and diagonal and compare correctly See appendix for exemplars
	(b)	$\sqrt{5.1^2 + 4.7^2 + 2.6^2} \left[= \sqrt{54.86} \right]$	M2	M1 for $5.1^2 + 4.7^2 + 2.6^2$ or for the diagonal of one face found [base = $\sqrt{5.1^2 + 4.7^2}$ or 6.9(35), front face = $\sqrt{5.1^2 + 2.6^2}$ or 5.7(24), side face = $\sqrt{4.7^2 + 2.6^2}$ or 5.3(7) or 5.4]	M0 for just $5.1^2 + 4.7^2$ oe with other faces
		7.37 to 7.43	A1	Allow B3 for 7.37 to 7.43 to 3sf or more but accept 7.4(0) only with correct method shown	NB 0 for scale drawing

5	(a)	(i)	(3, 0, 0)	1	
		(ii)	(0, 5, 2)	1	
	(b)		6.16 or 6.2	3	M2 for $\sqrt{(3^2 + 5^2 + 2^2)}$ oe Or M1 for $3^2 + 5^2 + 2^2$ oe Or for $\sqrt{(3^2 + 5^2)}$ or $\sqrt{(3^2 + 2^2)}$ or $\sqrt{(2^2 + 5^2)}$ oe

6	$\sqrt{15^2 + 35^2 + 10^2}$ 39.3 to 39.4 and no	M2 A1	M1 for $15^2 + 35^2 + 10^2$ or 1550 (may be in two steps of 2D Pythagoras) Ignore additional comments Allow 39 only after $\sqrt{15^2 + 35^2 + 10^2}$ or $\sqrt{1550}$ is shown with no premature approximation	If in two steps then figures are: 15, 35 pair = 1450 sq rt = 38.0788 15, 10 pair = 325 sq rt = 18.0277 35, 10 pair = 1325 sq rt = 36.4005 (roots may be rot to 3sf or more) + ust combine to earn M2 or M1 ie M0 for just 2D Pythagoras
			Allow B3 for 39.3 to 39.4 nfww and no	

7	11.6()	3	nfww	
			M2 for $\sqrt{6.7^2 + 6.7^2 + 6.7^2}$ oe Or M1 for $6.7^2 + 6.7^2 + 6.7^2$ Or SC1 for 9.47(5) rot to 1dp or more	

8	$\sqrt{220^2 + 180^2 + 200^2} \left[= \sqrt{120800} \right]$	M2	M1 for $220^2 + 180^2 + 200^2$ or for the diagonal of one face found rot to 3 sf or more [284.25, 269.07, 297.32]	
	347.56	A1	Allow A1 for 347 to 348	NB 0 for scale drawing, except that B1 may still be earned
	= 3.47 to 3.48 m or 3.5 m so yes	A1	Allow B1FT for correct conversion of <i>their</i> answer cm to m or of 3 m to 300 cm – may be e rned at start by conversion of a length to metres eg 2.2, 1.8, 2 seen on diagram	B0 for just stating 100 cm = 1 m

9	(a)	((0, 5, 3)	1		
		(ii)	(6, 5, 0)	1		
		(iii)	(3, 0, 1.5)	1		
	(b)		9	2	M1 for 6 × 3 ÷ 2 oe	
	(C)		8.36 to 8.4 or $\sqrt{70}$ final answer	3	M2 for $6^2 + 5^2 + 3^2$ oe soi by 70 Or M1 for $(6^2 + 5^2)$ or $(6^2 + 3^2)$ or $(5^2 + 3^2)$ soi	May be in two steps for M2

10	$\sqrt{35^2 + 28^2 + 15^2}$ oe	M2	M1 for 35 ² + 28 ² + 15 ² oe or 2234 (may be in two steps of 2D Pythagoras')	If in two steps then figures are (35, 28) pair = 2009 sq root = 44.82, (35, 15) pair = 1450 sq root = 38.07, (28, 15) pair = 1009 sq root = 31.76 + ust combine to score M2 or M1
	47.2[65] or 47.3 www and no	A1	Ignore additional comments after 'no' Allow 47 only after $\sqrt{2234}$ or $\sqrt{35^2 + 28^2 + 15^2}$ is shown with no premature approximation Allow B3 for 47.2[65] or 47.3 and no www	